Question1
Using Boolean algebra techniques, simplify the expression X . Y + X (Y + Z) + Y (Y + Z)
Solution:
Given: X . Y + X (Y + Z) + Y (Y + Z).
Applying distributive property, we get
X . Y + X (Y + Z) + Y (Y + Z) = X . Y + X . Y + X . Z + Y . Y + Y . Z
We know B . B = B
= X . Y + X . Y + X . Z + Y + Y . Z
We know A . B + A . B = A . B
= X . Y + X . Z + Y + Y . Z
= X . Y + X . Z + Y [We know (B + BC = B)]
= Y + XZ
Question 2:
XY¯XY¯ (X¯X¯ + YY) (X¯X¯ + XX)
Solution:
Given: XY¯(X¯+Y)(X¯+X)XY¯(X¯+Y)(X¯+X)
= XY¯(X¯+Y)XY¯(X¯+Y)
= (X¯+Y¯)(X¯+Y)X¯+Y¯)(X¯+Y)
= X¯+Y.Y¯X¯+Y.Y¯
= X¯X¯
Question 3
Simplify X+YX¯X+YX¯
Solution:
Given: XX + YX¯YX¯
By using DeMorgan’s law, AB¯AB¯ = A¯+B¯A¯+B¯
X+YX¯=X+(Y¯+X¯)X+YX¯=X+(Y¯+X¯)
= (X+X¯)+Y¯(X+X¯)+Y¯
= 1+Y¯
No comments:
Post a Comment